
  

Agile Systems Engineering – Eight Core Aspects 
 

Rick Dove 
Independent 

Arizona, USA 
dove@parshift.com 

 
Dr. Michael Orosz 

Information Sciences Institute 
University of Southern California 

Marina del Rey, CA USA 
mdorosz@isi.edu 

 

Kerry Lunney 
Thales Australia 

Sydney, NSW Australia 
kerry.lunney@thalesgroup.com.au 

 
Dr. Mike Yokell 

Independent 
Texas, USA 

mike.r.yokell@gmail.com 
 
 

Copyright © 2023 by Rick Dove, Kerry Lunney, Michael Orosz, Mike Yokell. Permission granted to INCOSE to publish and use. 

Abstract. Agile engineering, of any kind, employs strategies for designing, building, sustaining, 
and evolving purpose-fulfilling creations when knowledge is uncertain and operational environ-
ments are dynamic. Strategies address what needs to be accomplished and why, without constraints 
or directions on how. How those strategies manifest as operational methods depends upon the 
engineering context. For instance, though single-domain software engineering is different than 
multi-domain systems engineering, both share the same goals and strategies. This article describes 
eight agility-supporting strategic aspects with application discussions and examples relevant to 
systems engineering and exposes common myths and misunderstandings. Each of the eight aspects 
can individually improve capability to deal with uncertain knowledge and dynamic environments. 

Introduction 
The purpose of this paper is to provide a basic agile systems engineering foundation for addressing 
a Vision 2035 challenge (INCOSE 2021, p. 58): “Systems engineering anticipates and effectively 
responds to an increasingly dynamic and uncertain environment.” 

INCOSE’s Corporate Advisory Board, 120+ organizations, have designated Agile Systems Engi-
neering as one of the top priorities for INCOSE to address. Desired guidance was communicated 
by CAB-chair Ron Giachetti directly to the Agile Systems & Systems Engineering working group 
as six questions: 

1. What does it mean to be agile in the context of systems engineering? 
2. What are the key practices that can make systems engineering agile?  
3. How can organizations be more agile in their development of systems? 
4. What benefits can be gained using of agile practices for systems engineering? 
5. What is the relation between agility and model-based systems engineering (MBSE)?  

Best Paper Award 

mailto:dove@parshift.com


  

6. Are there system characteristics and architectures that make some systems more amenable 
to agile development and others less so?  

Questions one through four (Q1-Q4) roughly mirror the organization of this paper, with Q1 fol-
lowing this introduction. Q2 is addressed next in the section on Core Aspects, followed by Q3 in 
the section on Transition and Transformation, and Q4 in the Concluding Discussion. Q5 and Q6 
are indirectly covered within the section on Core Aspects and clarified directly in the Concluding 
Discussion section. Located between the Transition and Concluding sections is a section outlining 
and correcting Myths and Misconceptions. 

Agile System Engineering Meaning 
Agile systems engineering is a principle-based method for designing, building, sustaining, and 
evolving systems when knowledge is uncertain and/or environments are dynamic. Agile systems 
engineering is being agile, not doing agile. Thus, Agile System Engineering is a what, not a how.  

There are many hows, principally focused currently on the development phase, e.g., Evolutionary 
Development, Iterative Incremental Development (IID), Incremental Commitment Spiral Model 
(ICSM); and also many focused on a single (software) engineering domain, e.g. Scrum, Kanban, 
XP, and DevOps1. 

Agile systems engineering is best understood in contrast to sequential systems engineering in how 
the two relate to the system life cycle spectrum. Figure 1 shows pure forms of these two life cycle 
models in terms of their activity phases and data flows. All systems engineering life cycle models 
fall somewhere between the two ends of the spectrum, depending upon the process-encoded degree 
of attentiveness and responsiveness to dynamics in knowledge and environment. It is questionable 
that a pure form of either depicted extreme would be effective in actual practice (INCOSE 2023). 

Background Context 
To put agile systems engineering in perspective a brief history is in order. In 1991 the US Depart-
ment of Defense funded a project to investigate what would drive competition in manufacturing 

 
1DevOps IEEE/ISO/IEC Standard <https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=653267> 

 
Figure 1: Systems engineering lifecycle spectrum – sequential to agile. 

Concept

Development

Production

Utilization

Support

Retirement

Situational
Awareness

Development

Support

certain knowledge uncertain
Static environment dynamic

Extremely
Sequential

Extremely
Agile



  

enterprises after the then-active scramble to become more Lean had stabilized. The results of that 
project put the concept of agility and the word agile into play as a way to describe how organiza-
tions would deal with an increasing frequency of change in markets and technologies. For the next 
four years the Agility Forum, funded by DARPA (Defense Advanced Research Agency) at Lehigh 
University, led 1200 participants from 125 organizations through a collaborative discovery process 
across a broad base of business and engineering areas. The initial focus on agile manufacturing 
evolved quickly during the early ‘90s into agile system, agile enterprise, and agile command and 
control, which led to the 2001 adoption of the agile word to describe a variety of new agile ways 
to develop software (Dove and LaBarge 2014). INCOSE established agile systems engineering as 
one of its top priorities in 2014, the pursuit of which is informed by 25 years of prior related 
discovery and refinement, augmented by INCOSE-instigated case studies and refinement of agile 
systems engineering life cycle concepts (Dove and Schindel 2019). 

Core Aspects 
Eight core (Figure 2) aspects are each explained succinctly as a Why (need) and a What (behavior), 
with some examples of How (method). Examples may draw from domain engineering areas if they 
are clearly instructive as abstractions for application at the systems engineering level. 

Though these aspects are core strategies for any kind of agile engineering, the purpose and de-
scriptions here are for application at the systems engineering level rather than the domain engi-
neering level. 

Each of the aspects can individually improve capability to deal with uncertain knowledge and 
dynamic environments in any engineering process; but to have something intended as an agile 
engineering process at either domain or system level requires multiple aspects operating in concert. 
Individual aspects are strategic concepts that can tactically manifest over a range of intensity. Thus, 
the degree of agility is a product of how many of these aspects are operational as well as how 
effectively each one contributes to the agility required by the operating environment. Big bang 

 
Figure 2: Eight core aspects of agile systems engineering. 



  

concurrent implementation of all aspects is not necessary to gain agility benefits. Incremental 
adoption can accommodate incremental appetites. 

These eight aspects in their current form have emerged from the pooled knowledge of the authors 
of this article – knowledge gained from their considerable experiences in case study work, univer-
sity research work, and responsibilities for organizational systems engineering processes and prac-
tices. None of these aspects are new concepts. What is new is the amalgamation organized as 
domain independent fundamental strategies for engineering when knowledge is uncertain and op-
erating environments are dynamic. 

Product Line Architectures  
Needs: Facilitated product and process experimentation, modification, and evolution. 

Behaviors:  Composable and reconfigurable product and process designs from variations of reus-
able assets (Figure 3). 

Discussion: One fixed process 
approach won’t fit all pro-
jects, so an appropriate pro-
cess should be easy to com-
pose and evolve according to 
context and usage experience. 
Variations of reusable assets 
are built over time as features 
are modified for different con-
textual usage, potentially in-
forming multiple reference ar-
chitectures. 

A hallmark of agile systems 
engineering is iterative incremental development (discussed next), which modifies work in process 
as suitability is repetitively evaluated. The agility of the process is dependent upon the agility of 
the product – so both process and product need to be easily changed. 

Examples:  
• Product: Automobile design for new model market entry and aftermarket modification. 
• Process: SpaWar unmanned vehicle development (Dove, Schindel, Scrapper 2016) depicts 

assembly of IPT working groups, validation test activities, and frequent integration activi-
ties from available resources most appropriate for the activity of the moment. 

Iterative Incremental Development 
Needs: Minimize unexpected rework and maximize quality. 

Behaviors: Incremental loops of building, evaluating, correcting, and improving capabilities (Fig-
ure 4). 

 
Figure 3: Agile Architecture Pattern depiction, 

adapted from (Dove and LaBarge 2014). 



  

Discussion: Generally, increments create  
capabilities and iterations add and augment fea-
tures to improve capabilities. 

• Increment cycles are beneficially timed to 
coordinate events such as integrated test-
ing and evaluation, capability deploy-
ment, experimental deployment, or re-
lease to production. 

• Increments may have constant or variable 
cadence to accommodate management 
standards or operational dynamics.  

• Iteration cycles are beneficially timed to 
minimize rework cost as a project learns experimentally and empirically. 

Examples: 
• Incremental Commitment Spiral Model (Boehm, Lane 2007). 
• SpaceX: Rapid cycles of build-test-learn iterations2 (Rasky n.d.a). 
• SpaWar: Overlapping stages of subcontracted device development and government-led ar-

chitecture, integration, and validation increments (Dove, Schindel, Scrapper  2016). 
• Collins: asynchronous/unaligned integrated Domain Engineering (software, FPGA, ECB. 

mechanical) testable increments (Dove, Schindel, Hartney 2017). 

Attentive Situational Awareness  
Needs: Timely knowledge of emergent risks and opportunities. 

Behaviors: Active monitoring and evaluation of relevant internal and external operational-envi-
ronment factors (Figure 5). 

Discussion: Are things being done right (internal 
awareness) and are the right things being done (ex-
ternal awareness)? Having the agile capability for 
timely and cost-effective change does little good if 
you don’t know when that ability should be exer-
cised. Situational awareness can be enhanced with 
systemic methods and mechanisms. 

Examples:   
• Work in process demonstrations and re-

views for stakeholder feedback. 
• Periodic SE process-participant collabora-

tive evaluations. 
• Collins: Continual market and technology evolution monitoring and evaluation (Dove, 

Schindel, Hartney 2017). 

 
2 <www.youtube.com/watch?v=SMLDAgDNOhk&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=12> 

 
Figure 4: Iterative capability 

improvements (looping) and incremental 
capability additions (successive columns). 

 
Figure 5: Alert in-the-moment 

constant attention. 

https://www.researchgate.net/profile/Barry-Boehm/publication/228699789_Using_the_incremental_commitment_model_to_integrate_system_acquisition_systems_engineering_and_software_engineering/links/53fd97970cf2dca800035657/Using-the-incremental-commitment-model-to-integrate-system-acquisition-systems-engineering-and-software-engineering.pdf?_sg%5B0%5D=0gvAq2B3ib1jXsYc9wcbP3t-HhgNhQ2qD89OLrK98TMcCp8q_dOHesqdRDBgknQPJrmYMmc8S-LB1LQW1R9Hmg.hIh3LfZT1G3egi9aml-u-r51yeZrkVF9nV-k4BzM_kW4WhZTvrXCOjWtaF0EZetUq4ULVxvERxL2gXLFmenA-A&_sg%5B1%5D=KbwMQosdGVeYq3fckM3q-mAy2FJXKYCUaib-Cj7Xuueb3IEWZmGZajIESVpmvDd01FY9mHq0NGLjzxWvqYz0uBkqOD5kGro9N_NdJWBCFr42.hIh3LfZT1G3egi9aml-u-r51yeZrkVF9nV-k4BzM_kW4WhZTvrXCOjWtaF0EZetUq4ULVxvERxL2gXLFmenA-A&_iepl=


  

• Northrop: Systematic internet search for pending security threats and in-use COTS obso-
lescence (Dove, Schindel, Kenney 2017). 

• SpaceX: constant internet search and rapid evaluation acquisition3 (Rasky n.d.b). 

Attentive Decision Making 
Needs: Timely corrective and improvement actions. 

Behaviors: Systemic linkage of situational awareness to decisive action (Figure 6). 

Discussion:  Empower decision making at the point of most 
knowledge. As a counter example, technical debt (a term for 
knowing something needs correction or improvement but 
postponing action) is situational awareness without a causal 
link to prompt action. 

Examples: 
• Satisficing – making a timely good-enough decision 

rather than an optimal time-consuming decision. 
• Northrop: Systemic refactoring of development plan-

ning to shuffle resources needed to address real-time 
security-threat evolution (Dove, Schindel, Kenney 
2017). 

• SpaceX: “As soon as they would get to, we would joke, 51% probability, they would make 
a decision and move forward. … You keep making decision after decision after decision. 
If you find a problem you hadn’t anticipated then you backtrack, make another decision 
and try it again. It allows you to progress very rapidly (Rasky n.d.b).” 

Common-Mission Teaming 
Needs: Coherent collective pursuit of a common mission.  

Behaviors: Engaged collaboration, cooperation, and teaming 
among all relevant stakeholders (Figure 7). 

Discussion: Collaboration, cooperation, and teaming are not 
synonymous, and need individual support attention. Collab-
oration is an act of relevant information exchange among in-
dividuals, cooperation is an act of optimal give and take 
among individuals, and teaming is an act of collective en-
deavor toward a common purpose. 

 

 

 
3 <https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10> 

 
Figure 6: John Boyd’s OODA 

loop (Philips 2021). 

 
Figure 7: Tightly integrated 

coherent operation 

https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10
https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10
http://www.parshift.com/s/ASELCM-03NGC.pdf
https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10


  

Examples:  
• Integrated product teams – multidisciplinary groups of people who are collectively respon-

sible for delivering a defined product or process.4  
• High-performance teams – groups of people with complementary skills, committed to a 

shared vision, working towards a common objective.  
• SpaWar: Of particular note in the SE process was its successful objective and ability to 

integrate outside contractors as full team members, forming a family-like relationship of 
all-for-one and one-for-all (Dove, Schindel, Scrapper 2016). 

• Mine-Resistant Ambush Protected (MRAP) program: Plagued with discordant relation-
ships among a variety of service agencies, contractors, and manufacturers, Paul Mann cred-
its the eventual acclaimed success of the MRAP program to the many people who pulled 
together in a process that enveloped them all in the mission of program success, rather than 
local optimization of individual needs or contract performance independent of the effect 
on all others in the program  (Dove, Schindel, Scrapper 2016). 

Shared-Knowledge Management 
Needs: Accelerated mutual learning and single source of truth by internal and external stakehold-
ers. 

Behaviors: Facilitated communication, collaboration, and knowledge curation (Figure 8). 

Discussion: There are two kinds of knowledge to consider. Short time frame operational 
knowledge: What happened, what’s happening, what’s planned to happen. Long time frame cu-
rated knowledge: what do we know of reusable relevance, e.g., digital artifacts, lessons learned, 
and proven practices. 

Examples:  
• Periodic status meetings and information radiators, 

e.g., war room status displays. 
• Collaboration tools. 
• Model based systems engineering (MBSE) tools. 
• Product Lifecycle Management (PLM) tools. 
• SpaWar: The “Continuous Integration Environment” 

(CIE) is a home-grown data-driven repository of 
knowledge, with customized viewing templates for 
different needs and viewers. The intent is to facilitate 
a real-time collective consciousness, where all team 
members are plugged in to all information associated 
with full project success, as well as to the information 
of relevance to their specific responsibilities and 
tasks (Dove, Schindel, Scrapper 2016). 

 
4 https://acc.dau.mil/CommunityBrowser.aspx?id=24675&lang=en-US  

 
Figure 8: Depicted books repre-

sent information containers of 
any kind; but typically digital. 

http://www.parshift.com/s/ASELCM-01SSCPac.pdf
http://www.parshift.com/s/ASELCM-01SSCPac.pdf
http://www.parshift.com/s/ASELCM-01SSCPac.pdf
https://acc.dau.mil/CommunityBrowser.aspx?id=24675&lang=en-US


  

Continual Integration & Test 
Needs: Early revelation of system integration issues. 

Behaviors: Integrated demonstration and test of work-in-pro-
cess (Figure 9). 

Discussion: Discovering integration issues late in develop-
ment activities can impact cost and schedule with major re-
work. Synchronizing multiple domain engineering activities 
via continual integration and test provides faster and clearer 
insight into potential system integration issues. The examples 
below show some effective alternatives.  

Examples:  
• Digital engineering. 
• Iron bird – a physical system mockup for prototyping and integrating aircraft systems dur-

ing development. 
• Lockheed: ANTE (Agile Non-Target Environment) is used to compose integrated systems 

consisting of simulated devices, real devices, software simulations and work-in-process, 
and temporary low fidelity proxy devices. Subcontractors are required to provide device 
simulations to ANTE specs. (Dove, Schindel, Garlington 2018) 

• SpaceX: “While design and simulation are extremely important at SpaceX, they do not try 
to perfect a design before they try it. They design, and they simulate, but they also build 
and test often. They feel that they learn more by building something and pushing it to fail-
ure than they would learn in a hundred simulations” (Berg 2019). 

Being Agile: Operations Concept 
Needs: Attentive operational response to evolving knowledge and dynamic environments. 

Behaviors: Sensing, responding, evolving (Figure 10). 

Discussion: Agile systems engineering is not about do-
ing Agile, it is about being agile. Being agile is a behav-
ior, not a procedure – a behavior sensitive to threats and 
opportunities in the operational environment, decisive 
when faced with threat or opportunity, and driven to im-
prove these capabilities. Deciding how to implement any 
of the core aspects, even this one, should be done with 
sense-respond-evolve principles in mind as aspect ob-
jectives. 

Examples: 
• Scrum provides introspective sense-respond-

evolve examples in agile software engineering with its frequent product review and process 
retrospective ceremonies. These concepts are independent of the engineering domain. 

 
Figure 10: Three principles that 

operationalize agility 

 
Figure 9: SpaWar iteratively 

evolving unmanned technology 
integration platform (Dove, 
Schindel, Scrapper 2016). 



  

• SpaceX provides extrospective sense-respond-evolve examples, cycling through instru-
mented in-the-environment operational testing for rapid design evolution (Rasky n.d.a), 
and actively searching the internet for innovative technology solutions with rapid acquisi-
tion capability for decisive evaluation (Rasky n.d.b). 

• Colins combines both extrospective and introspective examples in their external market 
and technology evolution monitoring and evaluation compared against internal skills and 
competency needs  (Dove, Schindel, Hartney 2017). 

Transition and Transformation 
Systems engineering is agile to various degrees on all projects – nobody is stuck at either extreme 
of the life cycle spectrum (Figure 1).  

But how agile is agile enough? And how much is too much? The environments that systems engi-
neering processes and systems engineered products operate in is the measure of that. “Systems 
engineering anticipates and effectively responds to an increasingly dynamic and complex environ-
ment (INCOSE 2021, p. 58).” 

Agile systems engineering is a journey, not a destination. The dynamism and complexity of the 
systems engineering environments will continue to evolve over time. The nature of effective re-
sponse will necessarily evolve accordingly. The how-part can evolve rapidly, the what-part (be-
havior strategies) will evolve at a slower rate, and the why-part (need) likely remains fairly stable 
with perhaps augmented interpretations. 

Basically, there are two ways to become more agile: transition (incremental) and transformation 
(big bang). 

A big bang transformation requires a top-down management mandate to be successful and is best 
accompanied by standardized process training for all executives, managers, and engineers in the 
development chain. A case study of Lockheed Martin’s Integrated Fighter Group provides an ex-
ample (Dove, Schindel, Garlington 2018), in which they trained 1,200 people in two-day classes 
on the SAFe process with an additional one day of home-grown custom tailoring. 

An incremental transition can be a bottom-up initiative; and like any pursuit of expertise, it requires 
what is referred to as “deliberate practice” (Ericsson 1996):  

1. A well-defined task (performance improvement objective to achieve next). 
2. Appropriate difficulty level (a stretch within reach). 
3. Informative feedback (continual progress analysis). 
4. Opportunities for repetition and correction of errors (converge on the objective). 

It is not necessary to have all eight core aspects in place before targeting one or some for incre-
mental improvement. What is necessary is to have a measurable improvement target and a desire 
to succeed.  

Challenges: inertia and hard times. The incremental approach effectively wears away the inertia 
with a carefully chosen (least resistant, low hanging fruit) path of incremental improvements. The 
hard times issue is difficult if management reverts to old rigid ways during a crisis incorrectly 

https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10
https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10
https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10
https://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10


  

believing a return to progressive ways can occur when the crisis is over (Li, Mukherjee,  
and Vasconcelos 2022). 

Myths and Misunderstandings 
Myths and misunderstandings associated with agile software engineering often influence concerns 
about agile systems engineering (Carlson 2017, Deloitte 2014, Tzemach, 2022). What follows is a 
brief summary of common myths, with an associated correction to the causal misunderstanding. 

Paperwork is not required. Myth buster: The emphasis in agile approaches is to develop a work-
ing product with only the necessary documentation required for understanding to aid in sustaina-
bility and future development. 

There are no checks and balances. Myth buster: Checks and balances are achieved through the 
demonstration of working products that meet customer  needs and through project governance, 
including cadence of reviews and frequent customer feedback. 

The speed of development is faster. Myth buster: Agile approaches deliver working product 
sooner to the customer, but that doesn’t necessarily mean that the overall project will be completed 
faster. Unlike traditional sequential efforts where all capabilities are delivered once and at the end 
of a project, agile approaches deliver capabilities to the customer throughout the project, giving 
the appearance that the project is proceeding more quickly than traditional approaches. 

Agile approaches are only for software. Myth buster: No, although there are many codified pro-
cesses in practice for software development and fewer, more proprietary for other engineering 
domains. For example, Relativity Space’s “Stargate Factory” (Relativity Space 2022) reportedly 
plans to produce 95% of their rocket using additive manufacturing, allowing them to reduce the 
build time of a rocket from 24 months to a predicted two months, and the design iteration time 
from 48 months to six. 

Agile approaches aren’t for highly regulated industries. Myth buster: Often more challenging 
to codified agile approaches with insufficient contextual flexibility; but not inherently antithetical 
to a principle-based agile approach that addresses regulations as functional requirements.  For ex-
ample, agile approaches have successfully been implemented in US Department of Defense appli-
cations (Orosz, et al., 2022). 

There is less planning involved in agile approaches. Myth buster: Arguably there is more plan-
ning and replanning in an agile approach, with an emphasis on just-in-time dynamic planning 
based on evolving knowledge rather than conjectured expectations (i.e., plan, act, observe, feed-
back, replan, act, observe, etc.). 

Agile approaches are new concepts. Myth buster: Although introduced in 2001, the Agile Man-
ifesto (Fowler and Highsmith 2001) was not the beginning of agile approaches. Agile-like ap-
proaches have been implemented for many years (see earlier section on Background Context).  For 
example, the concept of successive repetitions of the process of interlaced testing and design of 
the system ultimately becoming the system was introduced at the 1968 NATO conference on Soft-
ware Engineering (Naur and Randell 1969, p. 32). 



  

Agile approaches favor developers. Myth buster: In agile approaches the teams (often composed 
of systems engineers, developers, testers, integrators, customer representatives and others) are 
given the authority to implement their scope. That is, teams, not the developers, self-organize and 
make decisions to implement their allocated features/stories. The focus here is on teams, not de-
velopers. 

An agile approach is hampered by architecture. Myth buster: There is always the need to un-
derstand the overall goals, parameters, and architecture to determine smaller development runs. 
Co-engineering is a must! 

An agile approach doesn’t scale. Myth buster: It isn’t straightforward to scale; however, hierar-
chical approaches that emphasize cross-team collaborations and coordination have been success-
fully used to scale agile development. 

Regular customer feedback through development minimizes/removes the need for formal 
validation. Myth buster: Validation of the final system solution in its intended operating environ-
ment is necessary; however, it may be streamlined based on the previous levels of testing and the 
risk profile of the project. 

Concluding Discussion 
We have shown that agile systems engineering practicing eight core aspects is able to satisfy the 
challenge: “Systems engineering anticipates and effectively responds to an increasingly dynamic 
and uncertain environment. (INCOSE 2021).” Attentive Situational Awareness is the explicit as-
pect of “anticipates,” but it relies on every other aspect to contribute implicitly. Attentive Decision 
Making is the explicit aspect of “effectively responds,” but it relies on every other aspect to enable 
that response effectiveness. 

We have also addressed the six questions posed by a collective of potential users (INCOSE’s Cor-
porate Advisory Board) in search of guidance. Aspect contributions shown in item 4 below are 
indicative, not comprehensive, as virtually every aspect is involved in delivering benefits: 

1. What does it mean to be agile in the context of systems engineering? 
• Your processes and people are prepared to navigate a systems engineering project through 

dynamic and uncertain operating environments. 

2. What are the key practices that can make systems engineering agile? 
• Eight core aspects were discussed as key practices. 

3. How can organizations be more agile in their development of systems? 
• Employ and continuously improve performance of the eight core aspects. 
• Incremental transition or big-bang transformation. 

4. What benefits can be gained using agile practices for systems engineering? 
• Minimal rework time and cost through incremental iterative development and continual 

integration (faster, less expensive). 



  

• Delivery of value within time and budget constraints through employment of all eight as-
pects, with incremental and iterative development prioritizing most viable product and evo-
lutions in the sequence of increments. 

• Higher quality results through iterative incremental development, common mission team-
ing, shared knowledge management, and continual integration and test (better fit with cus-
tomer needs) 

• Motivated, engaged, and productive employees through common mission teaming shared 
knowledge management and iterative incremental development. 

• Leading edge competitive capability through mastery of all eight aspects. 

5. What is the relation between agility and model-based systems engineering (MBSE)? 
• They are synergistic with rapid and frequent design prototyping (an experiment and learn-

ing aid) and with improved stakeholder and developer communication. 
• MBSE can provide cross domain and domain independent design interaction communica-

tion. 
• MBSE can demonstrate integrated functionality of a total system design long before func-

tional capability has physical presence. 

6. Are there system characteristics and architectures that make some systems more amenable to 
agile development and others less so? 
• More amenable systems can be architected as modular open systems. 
• Less amenable systems have external and uncontrollable dependencies. 

The eight aspects of agile systems engineering deal with the agility enabling and operational parts 
of systems engineering. In this respect they are a tailoring of a systems engineering process that 
encompasses many more process considerations. 

Agile systems engineering is a journey, not a destination (Figure 11). The operational environ-
ments of systems engineering and of engineered systems will continue to evolve, requiring that 
agile systems engineering continues to evolve. This paper identified eight core aspects that repre-
sent the starting points for that journey. Those that have already started are moving on to maturing 
and evolving their capabilities (Willett et al. 2021). 

 
Figure 11. Large organizations likely have units working in both early and advanced stages. 



  

References 
Berg, C. 2019. SpaceX’s Use of Agile Methods. Accessed 24 Sep 2022: 

https://cliffberg.medium.com/spacexs-use-of-agile-methods-c63042178a33  
Boehm, B. and J. A. Lane. 2007. Using the Incremental Commitment Model to Integrate System 

Acquisition, Systems Engineering, and Software Engineering.  CrossTalk, October. 
https://www.researchgate.net/publication/228699789  

Carlson, D. 2017. Debunking agile myths. CrossTalk, 30(3), pp.32-36. June. 
https://zlmonroe.com/CSE566/Readings/7.Debunking_Agile_Myths.pdf 

Phillips, M. S. 2021. Revisiting John Boyd and the OODA Loop in Our Time of Transformation. 
Defense Acquisition University. Defense Acquisition Magazine, October 21. 
www.dau.edu/library/defense-atl/blog/revisiting-john-boyd  

Deloitte. 2014. 9 Myths About Agile. Wall Street Journal. 25-March. Accessed 23 November 
2022:  https://deloitte.wsj.com/articles/9-myths-about-agile-1395720095  

Dove, R. and R. LaBarge. 2014. Fundamentals of Agile Systems Engineering – Part 1 & Part 2. 
International Council on Systems Engineering. International Symposium, Las Vegas, 
NV, June 30-July 3. 
www.researchgate.net/publication/264219672_Fundamentals_of_Agile_Systems_Engineering_-_Part_1_and_Part_2   

Dove, R., W. Schindel, and C. Scrapper. 2016. Agile Systems Engineering Process Features 
Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems 
Group. Proceedings International Symposium. International Council on Systems 
Engineering. Edinburgh, Scotland, July 18-21. 
www.researchgate.net/publication/308083752_Agile_Systems_Engineering_Process_Features_Collective_Culture_Co
nsciousness_and_Conscience_at_SSC_Pacific_Unmanned_Systems_Group  

Dove, R., W. Schindel, and R. Hartney. 2017. Case Study: Agile Hardware/Firmware/Software 
Product Line Engineering at Rockwell Collins. Proceedings 11th Annual IEEE 
International Systems Conference. Montreal, Quebec, Canada, April 24-27. 
www.researchgate.net/publication/316280809_Case_Study_Agile_HardwareFirmwareSoftware_Product_Line_Engine
ering_at_Rockwell_Collins  

Dove, R., W. Schindel, and M. Kenney. 2017. Case study: Agile SE Process for Centralized SoS 
Sustainment at Northrop Grumman. Proceedings International Symposium. International 
Council on Systems Engineering. Adelaide, Australia, July 17-20. 
www.researchgate.net/publication/319406885_Case_Study_Agile_SE_Process_for_Centralized_SoS_Sustainment_at
_Northrop_Grumman  

Dove, R., W. Schindel, and K. Garlington. 2018. Case Study: Agile Systems Engineering at 
Lockheed Martin Aeronautics Integrated Fighter Group. International Council on 
Systems Engineering, International Symposium, Washington, DC, July 7-12. 
www.researchgate.net/publication/327072122_Case_Study_Agile_Systems_Engineering_at_Lockheed_Martin_Aeron
autics_Integrated_Fighter_Group  

Dove, R. and W. Schindel. 2019. Agile Systems Engineering Life Cycle Model for Mixed 
Discipline Engineering. Proceedings International Symposium. International Council on 
Systems Engineering. Orlando, FL, July 20-25. 
www.researchgate.net/publication/334772706_Agile_Systems_Engineering_Life_Cycle_Model_for_Mixed_Discipline_
Engineering 

Ericsson, K. A. 1996. The Acquisition of Expert Performance: An Introduction to Some of the 
Issues. Chapter 1: The Road to Excellence – The Acquisition of Expert Performance in 
the Arts and Sciences, Sports and Games. Edited by K. A. Ericsson. Lawrence Erlbaum 
Associates, Inc. Free eBook:  https://oiipdf.com/the-road-to-excellence-the-acquisition-of-expert-
performance-in-the-arts-and-sciences-sports-and-games  

https://cliffberg.medium.com/spacexs-use-of-agile-methods-c63042178a33
https://www.researchgate.net/publication/228699789
https://zlmonroe.com/CSE566/Readings/7.Debunking_Agile_Myths.pdf
http://www.dau.edu/library/defense-atl/blog/revisiting-john-boyd
https://deloitte.wsj.com/articles/9-myths-about-agile-1395720095
http://www.researchgate.net/publication/264219672_Fundamentals_of_Agile_Systems_Engineering_-_Part_1_and_Part_2
http://www.researchgate.net/publication/308083752_Agile_Systems_Engineering_Process_Features_Collective_Culture_Consciousness_and_Conscience_at_SSC_Pacific_Unmanned_Systems_Group
http://www.researchgate.net/publication/308083752_Agile_Systems_Engineering_Process_Features_Collective_Culture_Consciousness_and_Conscience_at_SSC_Pacific_Unmanned_Systems_Group
http://www.researchgate.net/publication/316280809_Case_Study_Agile_HardwareFirmwareSoftware_Product_Line_Engineering_at_Rockwell_Collins
http://www.researchgate.net/publication/316280809_Case_Study_Agile_HardwareFirmwareSoftware_Product_Line_Engineering_at_Rockwell_Collins
http://www.researchgate.net/publication/319406885_Case_Study_Agile_SE_Process_for_Centralized_SoS_Sustainment_at_Northrop_Grumman
http://www.researchgate.net/publication/319406885_Case_Study_Agile_SE_Process_for_Centralized_SoS_Sustainment_at_Northrop_Grumman
http://www.researchgate.net/publication/327072122_Case_Study_Agile_Systems_Engineering_at_Lockheed_Martin_Aeronautics_Integrated_Fighter_Group
http://www.researchgate.net/publication/327072122_Case_Study_Agile_Systems_Engineering_at_Lockheed_Martin_Aeronautics_Integrated_Fighter_Group
http://www.researchgate.net/publication/334772706_Agile_Systems_Engineering_Life_Cycle_Model_for_Mixed_Discipline_Engineering
http://www.researchgate.net/publication/334772706_Agile_Systems_Engineering_Life_Cycle_Model_for_Mixed_Discipline_Engineering
https://oiipdf.com/the-road-to-excellence-the-acquisition-of-expert-performance-in-the-arts-and-sciences-sports-and-games
https://oiipdf.com/the-road-to-excellence-the-acquisition-of-expert-performance-in-the-arts-and-sciences-sports-and-games


  

Fowler, M. and J. Highsmith. 2001. The Agile Manifesto. Dr. Dobb's Journal, August. 
www.drdobbs.com/open-source/theagile-manifesto/184414755  

INCOSE. 2021. Systems Engineering Vision 2035. International Council on Systems 
Engineering. 

INCOSE. 2023. Systems Engineering Handbook: A Guide for System Life Cycle Process and 
Activities (5th ed.). Section 4.2.3,  Agile Systems Engineering. D. D. Walden, T. M. 
Shortell, G. J. Roedler, B. A. Delicado, O. Mornas, Y. S. Yip, and D. Endler (Eds.). San 
Diego, CA: International Council on Systems Engineering. Published by John Wiley & 
Sons, Inc. 

Li, J., A. Mukherjee, and L. Vasconcelos. 2022. What Makes Agility Fragile? A Dynamic 
Theory of Organizational Rigidity. Management Science. 
http://www.amukherjee.net/Rulebooks.pdf  

Naur, P. and B. Randell, Editors. 1969. Software Engineering. Report on conference sponsored 
by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968. 
Published January, 1969. <https://www.scrummanager.com/files/nato1968e.pdf> 

Orosz, M., Spear, G., Duffy, B., and Charlton, C. 2022.  Introducing Agile/DevSecOps into the 
Space Acquisition Environment. Proceedings, Naval Postgraduate School 19th Annual 
Acquisition Research Symposium Proceedings. Vol 1: 405-416. Naval Postgraduate 
School. https://dair.nps.edu/bitstream/123456789/4541/1/SYM-AM-22-028.pdf  

Philips, M. S. 2021. Revisiting John Boyd and the OODA Loop in Our Time of Transformation. 
Defense Acquisition University, Defense Acquisition Magazine, Sept/Oct.  
https://www.dau.edu/library/defense-atl/DATLFiles/Sept-Oct_2021/defacq-datl_Phillips_SeptOct2021.pdf  

Rasky, D. n.d.a Space X’s Rapid Prototyping Design process. National Aeronautics and Space 
Agency. 
https://www.youtube.com/watch?v=SMLDAgDNOhk&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=12  

Rasky, D. n.d.b Applying Software Design Process to Aerospace. National Aeronautics and 
Space Agency.  
www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10  

Relativity Space. 2022. Factory of the Future. <https://www.relativityspace.com/stargate> 
Scrapper, C., R. Halterman, and J. Dahmann. 2016. An implementer's view of the evolutionary 

systems engineering for autonomous unmanned systems. IEEE Systems Conference 
(SysCon 2016). Orlando, Florida, 18-21 April. 
https://zenodo.org/record/1280529/files/article.pdf  

Tzemach, D. 2022. Top Agile Myths & Misconceptions. Lambdatest, 27-September. Accessed 23 
November 2022:  https://www.lambdatest.com/blog/agile-myths-misconceptions  

Willett, K. D., R. Dove, A. Chudnow, R. Eckman, L. Rosser, J. S. Stevens, R. Yeman, and M. 
Yokell. 2021. Agility in the Future of Systems Engineering (FuSE) – A Roadmap of 
Foundational Concepts. Proceedings International Symposium. International Council on 
Systems Engineering. July 17-22. 
www.researchgate.net/publication/353348381_Agility_in_the_Future_of_Systems_Engineering_FuSE_-
_A_Roadmap_of_Foundational_Concepts   

 

http://www.drdobbs.com/open-source/theagile-manifesto/184414755
http://www.amukherjee.net/Rulebooks.pdf
https://dair.nps.edu/bitstream/123456789/4541/1/SYM-AM-22-028.pdf
https://www.dau.edu/library/defense-atl/DATLFiles/Sept-Oct_2021/defacq-datl_Phillips_SeptOct2021.pdf
https://www.youtube.com/watch?v=SMLDAgDNOhk&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=12
http://www.youtube.com/watch?v=yit0FvjDtkw&list=PL6vdik5frDGVL4USjKgYkJoOb76_7sdkS&index=10
https://zenodo.org/record/1280529/files/article.pdf
https://www.lambdatest.com/blog/agile-myths-misconceptions
http://www.researchgate.net/publication/353348381_Agility_in_the_Future_of_Systems_Engineering_FuSE_-_A_Roadmap_of_Foundational_Concepts
http://www.researchgate.net/publication/353348381_Agility_in_the_Future_of_Systems_Engineering_FuSE_-_A_Roadmap_of_Foundational_Concepts


  

Biography 

 

Rick Dove is an independent researcher, systems engineer, and project man-
ager generally focused in the systems agility and systems security areas. He 
chairs the INCOSE working groups for Agile Systems and Systems Engi-
neering and for Systems Security Engineering. He leads both the Agility and 
Security project areas for INCOSE’s Future of Systems Engineering (FuSE) 
initiative. He is an INCOSE Fellow, and author of Response Ability – the 
Language, Structure, and Culture of the Agile Enterprise. 

 

Kerry Lunney is the Country Engineering Director and Chief Engineer in 
Thales Australia. She has extensive experience developing and delivering 
large system solutions, working in various industries including ICT, Gaming, 
Financial, Transport, Aerospace and Defence, in Australia, Asia and USA. 
She also participates in a number of global working groups and research pro-
jects. Kerry is a Past President INCOSE, and holds the Expert Systems En-
gineering Professional (ESEP) qualification. She is also an INCOSE Fellow, 
and a Fellow of Engineers Australia with the status of Engineering Executive 
and Chartered Professional Engineer. 

 

Dr. Michael Orosz directs the Decision Systems Group at the University of 
Southern California’s Information Sciences Institute (USC/ISI) and is a Re-
search Associate Professor in USC's Sonny Astani Department of Civil and 
Environmental Engineering.  Dr Orosz has over 30 years’ experience in gov-
ernment and commercial software development, systems engineering and ac-
quisition, applied research and development, and project management and 
has developed several successful products in both the government and com-
mercial sectors. 

 

Dr. Mike Yokell is a leader in Systems Engineering in the US Aerospace 
and Defense Industry. He has been the US representative to international 
standards-setting bodies for Systems and Software Engineering and was the 
project editor for two new international standards on Systems of Systems 
Engineering. Mike is certified as an expert systems engineering professional 
by INCOSE. He holds multiple US and European Patents for Model Based 
Systems Engineering and large-scale immersive virtual reality. 

 


	Introduction
	Agile System Engineering Meaning
	Background Context

	Core Aspects
	Product Line Architectures
	Iterative Incremental Development
	Attentive Situational Awareness
	Attentive Decision Making
	Common-Mission Teaming
	Shared-Knowledge Management
	Continual Integration & Test
	Being Agile: Operations Concept

	Transition and Transformation
	Myths and Misunderstandings
	Concluding Discussion
	References
	Biography

