Agile SE Process Features
Collective Culture, Consciousness, and Conscience
at SpaWar Systems Center Pacific Unmanned Systems Group
IS16 Paper: www.parshift.com/s/ASELCM-01SSCPac.pdf

21-October-2016
MITRE Technical Exchange Meeting
Agile Transformation Challenge –Adapting to Rapid Change

Rick Dove
INCOSE Working Group Chair: Agile Systems & Systems Engineering
INCOSE Working Group Chair: Systems Security Engineering
Stevens Institute of Technology and Paradigm Shift International
Context

In The ‘90s we analyzed hundreds of real-world systems that exhibited agility, asking how they did that, and converged on fundamental structural patterns that fit facts.

We are now analyzing real-world processes that exhibit agility, asking how they do that, and converging on fundamental behavior patterns that fit facts.

No conjecture, no kinda good idea, no opinion.

(INCOSE ASELCM project details at: www.parshift.com/ASELCM/Home.html)
Why Agility Matters

CURVE

Internal and external environmental forces that impact process and product as systems

Capriciousness: unanticipated system-environment change

Uncertainty: kinetic and potential forces present in the system

Risk: relevance of current system-dynamics understanding

Variation: temporal excursions on existing behavior attractor

Evolution: experimentation and natural selection at work

(CURVE: formerly known as UURVE, Capriciousness = Unpredictability)
Agile-System Iconic Architecture Pattern (AAP)

System Response-Construction Kit

Integrity Management
- Resource mix evolution
- Resource readiness
- Situational awareness
- Activity assembly
- Infrastructure evolution

Infrastructure
- Active
- Passive

Rules/Standards
- Sockets
- Signals
- Security
- Safety
- Service

Modules/Components
- Gears/Pulleys
- Motors
- Wheels
- Joiners, Axles, Small Parts
- Structural Material

Product System Eng.
- Retail Distribution Process
- Product Manager
- Owner/Builder
- Product Manager

Active
- Plane
- Helicopter
- Mobile Radar

Passive
- Parts Interconnect Standards
- Construction stability
- (None)
- Harm-Proofing Standards
- Process Rules & ConOps

System Iconic Architecture Pattern (AAP)
Agile-Process AAP for USA Football
Drag-and-drop resources in a plug-and-play infrastructure

Resources

- Coaches (C--CC)
- Trainers (TT--T)
- Special Teams (ZZZ--ZZZ)
- Scouts (S---S)
- Medics/Therapists (M---M)

Defense Players (XXX---XXX)
Offense Players (OOO---OOO)

Game Plans

Plays

Integrity Management

- Resource mix evolution
- Resource readiness
- Situational awareness
- Activity assembly
- Infrastructure evolution

Active

Infrastructure

Passive

Rules/Standards

- Sockets
- Signals
- Security
- Safety
- Service

- Positions
- Play Book, QB Calls
- Covert Communications
- Protective Equipment
- NFL Rules, Team Culture

(a concept example, not exhaustive)
Sustaining Agility Requires …

• Proactive awareness of situations needing responses
• Effective options appropriate for responses
• Assembly of timely responses

Five Agility-Sustaining Responsibilities:

1. Resource Mix Evolution – Who (or what process) is responsible for capabilities of resources appropriate for needs?
2. Resource Readiness – Who (or what process) is responsible for conditions of resources deployable rapidly?
3. Situational Awareness: Who (or what process) is responsible for monitoring, evaluating, and anticipating the operational environment?
4. Activity Assembly – Who (or what process) is responsible for assembling new response configurations as situations require?
5. Infrastructure Evolution – Who (or what process) is responsible for evolving the passive and active infrastructures?
Agility-Enabling Design Principles (RRS)

Reusable
- Encapsulated modules
- Facilitated interfacing
- Facilitated re-use

Reconfigurable
- Peer-peer interaction
- Deferred commitment
- Distributed control & information
- Self organization

Scalable
- Evolving infrastructure standards
- Redundancy and diversity
- Elastic capacity
Agility-Facilitating Behavior Principles (MME)

Current Work: 2015 Discoveries of the INCOSE ASELCM Project (WIP)

Monitoring (Observing, Orienting)
- External awareness
- Internal awareness
- Sense making

Mitigating (Deciding, Acting)
- Decision making
- Action making
- Action evaluation

Evolving (Improving Above)
- Experimentation
- Evaluation
- Memory
Agile Systems Engineering Life Cycle Pattern
Encompassing Systems 1, 2, and 3

3. System of Innovation (SOI)

- Learning & Knowledge Manager for LC Managers of Target System
- Life Cycle Manager of LC Managers
- Learning & Knowledge Manager for Target Systems
- LC Manager of Target System

2. Target System (and Component) Life Cycle Domain System

1. Target System

(Substantially all the ISO15288 processes are included in all four Manager roles)

- System-1 is the target system under development.
- System-2 includes the basic systems engineering development and maintenance processes, and their operational domain that produces System-1.
- System-3 is the process improvement system, called the system of innovation that learns, configures, and matures System-2.
Two different operational environments defining necessary agile counterpoint for the systems they encompass

It is counterproductive to have an agile development process if you don’t have an agile product architecture
This case study reveals concepts with broad application across domains. An agile-SE process with 6-month, 4-phase, overlapping “waves”:

1. System component development
2. System architecture evolution
3. Capability integration
4. Validation testing

The process capability supports a portfolio of projects, with three years of respected and effective results.

Classic Wave Model, subsequently tailored for the analyzed process

(Scraper and Dahmann, 2016)
The Process is Successful

...replaced a waterfall process plagued by cost overruns, missed schedules, inadequate development achievement, uncooperative teaming, and poor status visibility.

...orchestrates the interaction of 60-some engineers and managers on the project, plus six external organizations of 4-5 engineers each working on development of functional capabilities.

... encompasses research, development, integration, test, and evaluation of deployable system and component technologies with new capabilities.

... demonstrated effectiveness over three years in lower and predictable costs, on-time capability deliveries, and continual advancements on the overall performance of the systems under development.

... expectations to migrate the process to other programs.
Curve Environment

- **Capriciousness: Unknowable Situations**
 - Strategic realignment by sponsor
 - Engagement and/or availability of personnel & contractors

- **Uncertainty: Randomness With Unknowable Probabilities**
 - Feasibility of technical approach and initial designs
 - Contracting issues, funding gaps, and budget short falls

- **Risk: Randomness With Knowable Probabilities**
 - Failure to meet technical performance measures
 - Maturation and integration of required component technologies

- **Variation: Knowable Variables And Associated Ranges**
 - Availability of test ranges and test support, and obtaining approvals
 - RAM* of vehicle test-beds (vehicle, sensors, computing HW, cables…)

- **Evolution: Gradual Successive Development**
 - Technical landscape and insertion of emerging technology
 - Programmatic objectives and stakeholder’s scope creep

RAM: Reliability, Availability, Maintainability
On Choosing the Agile Wave Model Approach

Scrum learns in 2-4 week sequential development increments, with retrospective analyses of outcomes and process-behavior.

Spiral includes more than software development, necessitating longer learning cycles, with risk reduction as a central cycle-driving theme.

Wave has overlapping learning cycles, decoupling the development effort from the subsequent integration, test, and evaluation efforts.

Decoupling enables back-to-back development increments that don’t have to wait for integration, test, and evaluation to start next increment.

Key Take Away:

• Let an understanding of the problem pull an agile solution that fits.
• Don’t push a favored agile process … just because.
Wave Benefits to this Program

The Wave Model offered meaningful progress feedback in project-appropriate 6-month cycles, long enough to accommodate incremental new-capability development time, and short enough to demonstrate frequent progress to sponsors and allow learning and affordable re-planning and corrective action when needed.

There is nothing about the Wave Model that precludes a Scrum approach in the software-development activity, if software developers wish.

The Wave Model approach accommodates tailoring based on size of project, funding levels, and overall project goals.

System-2 Wave, using a modular-component System-1 architecture, lowers costs to all sponsors with re-usable modules across projects.
Five elements of the Integration Strategy

- Vision
- Systems Engineering Plan
- Modular Open Product-System Architecture
- Integration Test and Experimentation Master Plan
- Continuous Integration Environment
Integration Strategy
Overlapping Six-Month Waves

Analysis and Development

Evolve Architecture

Integrate Capabilities

Validate System

Wave #3
Wave #4
Wave #5
Wave #6
Wave #7
Wave #8

FY13 IV&V SUMET
TDPv2.0
EO-only Perception
Daylight operation
Material Classification

FY14 TRA
Fundamental Enhancements
Multimode Perception
Path Planning Enhancements

FY15 TRA
Advanced Maneuvers
Nighttime Operations
Basic Tactical Behaviors

FY16 MAGV Demo
Multimode perception (TRL 6)
Day/Night operation
Safe & Ready for Operational Environment
Engaged Integrated Team: Alternate Leads and End-Users

- Contractor Lead
- Program Support
- Conduct Analysis
- Architectural Analysis
- System Verification
- System Validation & Extended Testing
- Integrate Capability Enhancements
- Evolve System Architecture
- Program Lead
- Contractor Support
- End-User Support
- Validate System
- Production Release
- Stable Release
Integrated Strategy Chart

CDR: Critical Design Review
DoI: Declaration of Intent
PDR: Preliminary Design Review
SDR: System Design Review
SFR: System Functional Review
SRR: System Requirements Review
TEMP: Test and Experimentation Master Plan
TOP: Test Operating Procedures
TRR: Test Readiness Review
Continuous Integration Environment (CIE)

- Partitioned for access control.
- Knowledge/information/tech-data partitioned by functional areas.
- Physically a home-grown federated system of software apps.
- Operationally an orchestration and collective-consciousness mechanism.

Content: Chris Scrapper, SSC-Pac
Internal Awareness

Project Processes: Information Management Process
Implemented by the Continuous Integration Environment (CIE) that facilitates the continuous integration and feedback between capability developers, integration team, and validation team.

- Best-of-breed collaboration tools (e.g., source code management, issue tracking, and build testing).
- Basis for communication and knowledge transfer between stakeholders.
- Access control and user agreements/NDA for management of Intellectual Property.
- Project documentation (e.g., project plans, bug fixes, change requests, risks, and maintenance reports).

Technical Data Package (TDP) and Interface Control Documentation (ICD) updated each wave.
Agile SE Process AAP
for evolving autonomous off-road-vehicle robotic military technology

SE-Process Reusable/Reconfigurable Resources

Integrity Management
- Resource mix evolution
- Resource readiness
- Situational awareness
- Activity assembly
- Infrastructure evolution

Active Facilitating

Infrastructure

Passive Enabling

Rules/Standards
- Sockets: CIE, System-1 modular architecture, roles, culture, test threads
- Signals: Vision, Declarations of Intent, Config Mgmt Plan, Integration Strategy, CIE data, decisions, engaged team feedback
- Security: User agreement/NDA, Config Mgmt Plan, CIE access controls
- Safety: Open-process visibility, open communication, protected communication
- Service (SE ConOps): Vision, Culture, Conscience, Wave, Integration Strategy/TEMP, Sys-1 and Sys-2 AAP

- **Sockets**
- **Signals**
- **Security**
- **Safety**
- **Service**

PM+CIT
PM+CIT (Core Integration Team)
PM+CIT+Leads
Leads
PM (Process Manager)

RaDER Integration

EV1 Integration

IPT Working-Group

Validation Testing

IL Integration Leads
FL Functional Leads
TL Technical Leads
CP Contract Performers
WF Users (War Fighters)
RC Reusable Components
CD CIE Data
TM Test Methods
Pattern Modeling Examples from SSC-Pac Case Study

Attributes of Individual Component Roles, and Emergent Systemic Attributes

Selected Subset of ASELCM Interactions, System-2
Collective Culture of Engagement

Most pronounced during the analysis activity was the pervasive nature of the culture, its thoughtful development, and its continual reinforcement. Done with a combination of soft skills and supporting infrastructure.

Culture is a shared set of expectations for behavior, and an environment that enforces that behavior. Here culture isn’t written like a mission statement, but is rather practiced by leadership, shaped by consistent reinforcement, and enforced by dealing openly with infractions detrimental to the team and at odds with a pervasive collective agreement to work together toward total success.

Full and active engagement with the SE process intent and the SE project objectives is the expectation. All team members are on a shared mission, and all team members need to support and be supported by all other team members, at all times.

The nature of the SE process, its leadership, and the transparency of comprehensive real-time project status provide team-engagement sensitivity. If the culture doesn’t fit an individual, that individual will either move on, or adjust. The culture does not tolerate inaction.
Collective Consciousness

The Continuous Integration Environment (CIE) is a data-driven repository of knowledge, with customized viewing templates for different needs. CIE provides user interfaces that separate internal representations of data (the *model*) from the ways that information is presented to users (the *view*), with custom views for different stakeholders.

This homegrown CIE is structured as a federation of independent capabilities, mostly off the shelf, and is being evolved to provide real-time relevant and comprehensive views of history and current status to all team members.

The CIE intent is to facilitate a real-time collective consciousness, where all team members are plugged in to all information associated with full project success, as well as to the information of relevance to their specific responsibilities and tasks.

New data, new decisions, new issues, new test results, ripple through the relevant federation of CIE components and CIE user views immediately.

This collective consciousness manifests for the team much like it does for musicians in a symphony orchestra, where off notes and bad timing are immediately sensed by all.
Collective Conscience

Meeting openings remind everyone that the customers are taxpayers and warfighters. These reminders don’t stop with a simple statement. They are rooted in image and story that elevates them to personified walking needs with faces.

The warfighter needs tools that are effective, timely, and affordable for mission achievement and self preservation. Warfighter reality is obtained with their critical presence at testing events, and with structured workshops between waves.

The tax payer needs tools that are effective, timely, and affordable for national/homeland security – capability that is affordably deployable, not costly technology that limits production quantities and threatens sustainable programs.

In these contexts (warfighter and taxpayer) the team accepts responsibility, and evaluates decisions with that critical internal customer voice.

The team develops and maintains a collective conscience to do what is responsibly right. This breaks the inertia of building upon favorite and comfortable technical approaches, to consider technologies that address the fundamental needs.
Asynchronous/Simultaneous Agile Life-Cycle Framework

Research
- Situational awareness and evaluation of external and internal environments and evolution, for threat and opportunity.

Concept
- Identify needs.
- Explore concepts.
- Propose viable solutions.

Development
- Refine requirements.
- Describe solution.
- Build system.
- Verify & validate.

Utilization
- Operate system to satisfy users' needs.

Production
- Produce systems.
- Inspect and test.

Support
- Provide sustained system capability.

Retirement
- Store, archive or dispose of sub-systems and/or system.

Engage

This framework is consistent with ISO/IEC/IEEE standards

Observed in all workshops to date

Asynchronous/Simultaneous Agile Life-Cycle Framework

Research
- Situational awareness and evaluation of external and internal environments and evolution, for threat and opportunity.

Concept
- Identify needs.
- Explore concepts.
- Propose viable solutions.

Development
- Refine requirements.
- Describe solution.
- Build system.
- Verify & validate.

Utilization
- Operate system to satisfy users' needs.

Production
- Produce systems.
- Inspect and test.

Support
- Provide sustained system capability.

Retirement
- Store, archive or dispose of sub-systems and/or system.

Engage
ASELCM Project – First Year

Accomplished

• 4 analysis workshops: SSC-Pac, NGC, Rockwell-Collins, Lockheed
• Case studies: 1 finished (IS16), 2 in draft and 1 in start (IS17 targeted)

Learned relative to project objectives

• Working hypothesis developed for 9 fundamental principles
• Asynchronous/Simultaneous life cycle model framework fits practice
• Awareness (research) life-cycle stage is necessary addition
• 15288 process activities are distributed/integrated throughout stages
• Agile SE producing agile systems enables/facilitates system evolution and life-extension

Next

• Secure 4-5 second-round hosts
• Vet 9-principle hypothesis: confirm/deny/augment
• Explicitly capture examples of the employment of the principles
References

INCOSE Webinars:

ASELCM project and workshop Host information/details: www.parshift.com/ASELCM/Home.html